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ABSTRACT

We analyze the relationship between the flare X-ray peak flux, and characteristics of the Polarity

Inversion Line (PIL) and Active Regions (AR), derived from line-of-sight (LOS) magnetograms. The

PIL detection algorithm based on a magnetogram segmentation procedure is applied

for each AR with 1 hour cadence. The PIL and AR characteristics are associated with

the AR flare history and divided into flaring and non-flaring cases. Effectiveness of

the derived characteristics for flare forecasting is determined by the number of non-flaring cases

separated from flaring cases by a certain threshold, and by their Fisher ranking score. The Support

Vector Machine (SVM) classifier trained only on the PIL characteristics is used for the

flare prediction. We have obtained the following results: (1) the PIL characteristics are

more effective than global characteristics of ARs, (2) the highest True Skill Statistics

(TSS) values of 0.76±0.03 for ≥M1.0 flares and 0.84±0.07 for ≥X1.0 flares are obtained

using the “Sigmoid” SVM kernel, (3) the TSS scores obtained using only the LOS

magnetograms are slightly lower than the scores obtained using vector magnetograms,

but significantly better than current expert-based predictions, (4) for prediction of
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≥M1.0 class flares 74.4% of all cases, and 91.2% for ≥X1.0 class, can be pre-classified

as negative with no significant effect on the results, (5) the inclusion of global AR

characteristics does not improve the forecast. The study confirms the unique role of the

PIL region characteristics in the flare initiation process, and demonstrate possibilities

of flare forecasting using only the line-of-sight magnetograms.
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1. INTRODUCTION

Usually lasting from several minutes to several hours, solar flares can release more than 1032 erg

of energy, and cause harmful effects to the terrestrial environment. The only possible source to

accumulate such large amounts of energy is magnetic field of active regions. Emslie et al. (2012)

demonstrated for a sample of 38 flares that the free (non-potential) energy of magnetic field was

sufficient to explain the flare energy release including Coronal Mass Ejections (CMEs), energetic

particles, and hot plasma emission and dynamics. For understanding the flare physical mechanism

and developing flare predictionmethods it is important to find critical magnetic field characteristics

that are linked to the flare initiation and strength.

There have been two types of such study. The first approach is to focus on global characteris-

tics of active regions, and the second approach is to search for local critical properties of magnetic

fields. For instance, in the first type studies, Mandage & McAteer (2016) demonstrated a differ-

ence between the magnetic field power spectrum slopes of flaring and non-flaring active regions.

Korsós et al. (2014) found several promising preflare signatures using the SOHO/MDI-

Debrecen Data sunspot catalog. Korsós et al. (2015) introduced the weighted horizontal

magnetic gradient, WGM , which allowed them to predict the onset time for ≥M5.0 class

flares, and conclude whether or not a flare is likely be followed by another event in

the next 18 hours. The daily averages of WGM together with a separation parame-

ter Sl−f of magnetic polarities were used by Korsós and Erdélyi (2016) to obtain some

conditional probabilities of flare and CME characteristics. Bobra & Couvidat (2015);

Bobra & Ilonidis (2016); Nishizuka et al. (2017); Liu et al. (2017) have used vector magne-

tograms from the Space-weather HMI Active Region Patches (SHARP) and applied machine-learning

techniques (Support Vector Machine, Random Forest, and Nearest-Neighbor classifiers)

for flare and CME predictions. Also, a recent study of Raboonik et al. (2017) used the Zerneke

moments as characteristics of the active region magnetic field for flare prediction.

Many observational studies of the second type found that the magnetic field Polarity In-

version Line (PIL) in regions of strong field plays an important role in the flare
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activity (e.g. Severny 1964; Hagyard et al. 1990; Wang et al. 1994; Falconer et al.

1997; Kosovichev and Zharkova 2001; Jing et al. 2006; Schrijver 2007; Kumar et al.

2015; Barnes et al. 2016; Schrijver 2016; Sharykin et al. 2016; Toriumi et al. 2017;

Bamba et al. 2017; Zimovets et al. 2017). Kusano et al. (2012) demonstrated from

three-dimensional magnetohydrodynamic simulations that flare eruptions can be initi-

ated by emergence of certain small magnetic structures near PIL, as evident from ob-

servations. Toriumi et al. (2013, 2014) pointed out an important role of highly-sheared

magnetic field in the vicinity of PILs in the flare development process. Guennou et al.

(2017) found from simulations that the PIL parameters measuring the total non-

potentiality of active regions present a significant ability to distinguish between eruptive

and non-eruptive cases. From magnetograms one can extract several descriptors representing the

local field in the PIL vicinity. For example, Falconer et al. (2003) showed that the length of the PIL

with a strong field gradient and sheared transverse field correlates with the CME and flare produc-

tivity. Mason & Hoeksema (2010) introduced the Gradient-Weighted PIL length as a characteristic

for solar flare forecasts. Falconer et al. (2011, 2012, 2014) found that this characteristic is a good

proxy for the free magnetic energy. Leka & Barnes (2003a,b, 2007) suggested to use a shear

angle between the observed and reconstructed magnetic fields. Chernyshov et al. (2011) used the

PIL length, the area of strong magnetic field in the PIL vicinity, and the total flux in this area, as

well as the rates of change of these characteristics.

In this paper, we perform a critical analysis of various line-of-sight (LOS) magnetic field charac-

teristics (derived for the entire active region and for the PIL vicinity), their relationship to the

flaring activity, and importance for flare forecast. Such analysis based on the LOS magne-

tograms is important because these observations can be performed more easily and accurately

than the full vector magnetic field measurements in near-real time by various space-based

and ground-based observatories. In Section 2, we describe automatic procedures for identification of

PIL, calculation of various magnetic field characteristics, association of the derived characteristics

with flare events, and construction of “train” and “test” data sets. In Section 3, we estimate the
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effectiveness in the separation of flaring and non-flaring cases for different LOS characteristics. Sec-

tion 4 describes the application of Support Vector Machine (SVM) classifier for prediction of M- and

X-class flares. The results are summarizes in Section 5. The comparison with previous results,

expert-based scores and following conclusion are presented in Section 6.

2. DATA PREPARATION

2.1. Magnetogram Segmentation

For analysis we used the Line-of-Sight (LOS) magnetograms of Active Regions (AR), obtained

by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI,

Scherrer et al. 2012). The active region data were represented in the form of 30o × 30o data cubes

with 1 h cadence, remapped onto the heliographic coordinates using the Postel’s projection, and

tracked with the solar differential rotation during the whole passage of active regions on the solar

disk, employing the standard SDO software. To avoid projection effects, following Bobra & Couvidat

(2015) we consider ARs only when they are located within ±68deg from the disk center.

By definition, the Polarity Inversion Line (PIL) is the line where the LOS magnetic field changes

its sign. For the automatic robust detection of the PIL of strong fields in active regions we use

the algorithm initially introduced by Chernyshov et al. (2011) and Laptev (2011). This algorithm is

based on a magnetogram segmentation process formulated as an optimization task. The goal is to

divide the magnetogram into regions with strong positive field (“positive” segments), strong negative

field (“negative” segments), or weak field (“neutral” segments). We describe the algorithm in detail

in Appendix A. An example of the segmentation and PIL detection for AR 11158 is illustrated in

Fig. 1.

To isolate the active region area, we use the following two algorithms. The first one is based

on the segmentation result: we apply one morphological dilation (inclusion of neighboring pixels)

to the positive/negative segments (see Appendix A), combine them, choose the largest segment

containing the active region center, and determine the minimum bounding box around it. The

second algorithm is implemented following the procedure of Stenflo and Kosovichev (2012). The
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magnetogram is smoothed, and for each strong magnetic field island the bounding box with a margin

of fixed width (18′′) on all sides is defined. Then, the intersecting bounding boxes are replaced by

a larger bounding box. The solution represents the largest bounding box intersecting the center of

the data cube (the center of AR). We have found that by applying both algorithms and selecting

the smallest bounding box almost all ARs can be effectively separated from their neighbors. The

bounding box extracted for AR 11158 is presented in Fig. 1.

2.2. Derivation of PIL and AR Characteristics

After performing the segmentation and bounding procedures, we calculate the following descriptors

(characteristics) using the derived PIL and the tracked and remapped magnetogram:

1. The PIL length defined as the number of pixels occupied by the PIL.

2. The PIL area obtained after 10 morphological dilations of the PIL.

3. The unsigned magnetic flux in the PIL area.

4. The unsigned horizontal gradient in the PIL area defined as the sum of∇hBz =

√(
∂Bz

∂x

)2

+

(
∂Bz

∂y

)2

over the PIL area pixels.

5. The maximum gradient of the LOS magnetic field across the PIL.

6. The gradient-weighted PIL length (Mason & Hoeksema 2010) calculated as the sum of

the PIL pixels multiplied by the unsigned horizontal gradient in each pixel.

7. The R-value (Schrijver 2007) representing the unsigned magnetic flux weighted with the

inverse distance from the PIL.

Also, we calculate the following characteristics of the entire AR (“global” characteristics):

8. The AR area defined as the total area of the positive and negative segments.

9. The unsigned magnetic flux in the AR area.

10. The maximum strength of magnetic field in AR.

11. The unsigned horizontal gradient in the AR area.



LOS Characteristics and Flares 7

2.3. Definition of Positive and Negative Classes, and Construction of “Train” and “Test” Data Sets

The next important step is to associate the magnetic field characteristics derived for each AR with

the flare events detected by the GOES satellite. Following Nishizuka et al. (2017), we classify a set of

magnetic field characteristics as a “positive” case if a ≥M1.0 flare occurred in the corresponding AR

within 24 h after the last field measurement. This means that for each flare there can be 24 positive

cases (sets of measured LOS magnetic field characteristics) or less. For the period from April, 2010

to June, 2016, 521 M-class and 31 X-class flares were associated with at least one positive case.

Ahmed et al. (2013) introduced two ways to determine the negative cases, described by so-called

“operational” and “segmented” associations of active region characteristics and flares. According

to the operational association, the negative cases are defined to be exactly opposite to the positive

cases, i.e. are assigned if there was no flare of ≥M1.0 X-ray class within 24 h after the magnetic field

measurement. For the segmented association, the case is defined as negative if no flares occurred

48 h before and after the case time moment. In the following we will use the operational association

for the “test” subset while keeping the segmented association for the “train” subset. The segmented

association better separates the positive and negative cases (by neglecting negative cases occurring

very close to the flare time), while the operational association is needed for real-time predictions.

The same procedure was applied also for ≥X1.0 class flares.

For the operational-type real-time flare forecasts, the classifier is defined for future cases based on

the previously observed classified cases. To simulate the real-time operational forecast, we constructed

the “train” and “test” datasets to be sequential in time. We assign all the cases belonging to ARs

with the NOAA numbers 11059-12158 to the “train” data set, and AR 12159-12559 to the “test”

data set. The ratio of the “train” and “test” datasets is approximately 70% to 30% (following

Bobra & Couvidat 2015; Nishizuka et al. 2017). We also assume that we have just one attempt to

classify a “test” dataset for prediction of ≥M1.0 or ≥X1.0 flares, which means that the classifier

tuning should be done on the “train” dataset only.

3. EFFECTIVENESS OF CHARACTERISTICS
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In this Section, we analyze the effectiveness of the derived magnetic field characteristics to separate

the positive and negative (flaring and non-flaring) cases. One of the simplest ways to illustrate the

separation ability of magnetic field characteristics is to construct combined histograms for positive

and negative cases. The examples of such histograms are presented in Fig. 2. The upper two panels

correspond to two PIL characteristics: the unsigned magnetic flux in the PIL area and the gradient-

weighted PIL length; and the lower two panels correspond to two AR characteristics: the unsigned

magnetic flux in the AR area and the unsigned horizontal gradient in the AR area.

One can notice that for the PIL characteristics there are more flaring than non-flaring cases in

the tails of the histograms (light color areas). We found such situation for all PIL characteristics

that we computed. For the global AR characteristics, we found a slight dominance of positive cases

in the distribution tail only for the unsigned magnetic flux, and did not observe it for other three

characteristics.

There is one common feature in the histograms. The positive cases occur only if the characteristics

reach some critical (threshold) value. For some LOS characteristics the existence of the critical

values is more prominent in the normal-scaled histogram, but for others in the logarithmic-scaled

histogram. This feature is used to simplify the classification (prediction) problem by reduction of

the amounts of data considered for the classification. The red dashed (for ≥M1.0 flares) and green

dashed (for ≥X1.0 flares) lines in Fig. 2 represent the threshold values, above which 95% of positive

cases are observed. Note that the threshold values are determined using the “train” data set. At

the same time, the mean values of the positive cases are shown by solid lines of the same color. The

threshold and mean values for the positive cases, as well as the mean value for the negative cases,

are summarized in Table 1.

There are many ways to quantitatively determine which characteristics are most effective for a

classification problem. The inclusion of characteristics that are not discriminative leads to a high

computational cost without improvement of the result, and may even decrease the performance of the

SVM (Bobra & Couvidat 2015). Breiman (2001) proposed to evaluate feature importance by using

the Random Forest classification, which was also used by Nishizuka et al. (2017). Al-Ghraibah et al.
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(2015) employed the univariate True Skill Statistics (TSS) score as a measure of feature importance.

Ahmed et al. (2013) used the Correlation-Based Feature-Selection (CFS) and Minimum Redundancy

Maximum Relevance (MRMR) methods. Leka & Barnes (2003b) suggested the Mahalanobis distance

between classes and Hotelling’s T2-test to measure statistical differences between flaring and non-

flaring cases. Bobra & Couvidat (2015) calculated the Fisher Ranking score (or F-score) as a measure

of a univariate effectiveness of the separation ability.

In this work, we calculated two simple univariate scores for the obtained magnetic field characteris-

tics. Firstly, for each characteristic we derived the threshold separating 5% of the positive cases.

As seen from Table 1, these threshold values (for both ≥M1.0 and ≥X1.0 flares) are comparable or

even greater than the mean values for the negative cases for most characteristics. Thus, the fraction

of negative cases which could be cut off by this threshold is used as a measure of effectiveness of

characteristics in separating the “train” and “test” data sets. Secondly, we calculate the Fisher

ranking score (or F-score, Bobra & Couvidat 2015; Chang & Lin 2008):

F (i) =
(x̄+

i − x̄i)
2 + (x̄−

i − x̄i)
2

1

n+ − 1

n+∑
k=1

(x+
k,i − x̄+

i )
2 +

1

n− − 1

n−∑
k=1

(x−
k,i − x̄−

i )
2

,

where x̄i is the mean value of characteristic i; x̄+
i and x̄−

i are the mean values of characteristic i for

the positive and negative cases; and n+ and n− are the total numbers of the positive and negative

cases. We calculated the F-score for all the characteristics for the train dataset. Sometimes, the

F-score is higher if calculated for the logarithms of the parameters. Therefore, we also calculated the

F-scores of decimal logarithms of each parameter and used it if the score was higher than the one

for the normal-scaled characteristic.

The results for both estimates of effectiveness are combined and summarized in Tables

2 and 3 for the ≥M1.0 and ≥X1.0 class flares respectively. The cases for which the

logarithmic scale was used in the F-score calculation are labeled as (log) in Tables 2

and 3. The SVM training and testing were also done in the logarithmic scale for such

parameters. One can notice from Tables 2 and 3 that for every considered univariate

test the PIL characteristics have higher scores than the global AR parameters.
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4. METHODOLOGY OF FLARE PREDICTION

Currently most operational flare forecasts are based on expert decision. However, many

recent works (Bobra & Couvidat 2015; Shin et al. 2016; Hada-Muranushi et al. 2016;

Anastasiadis et al. 2017; Liu et al. 2017; Raboonik et al. 2017; Nishizuka et al. 2017)

demonstrated that the Machine-Learning algorithms can be successfully applied for

flare prediction. In this Section, we test if it is possible to forecast ≥ M 1.0 and ≥ X 1.0 flares,

using Machine-Learning algorithms based solely on the LOS magnetic field characteristics. Our

approach is to utilize the Support Vector Machine (SVM, Cortes & Vapnik 1995) classifier for flare

forecasting using the Python module “Scikit-Learn” (Pedregosa et al. 2011). The description of SVM

can be found in Bobra & Couvidat (2015), and in Appendix B.

The computational cost of the SVM classifier scales with the number of cases in the “train” data

set and the number of features (characteristics, descriptors) as O(N2 × M) if N >> M . On one

hand, a large number of training samples should positively affect the classifier performance. On the

other hand, the SVM classifier has many parameters that should be optimized, and the computing

time quadratically increases with the size of “train” dataset. Thus, any possibility to reduce the

number of cases which need to be classified should be utilized. In the previous Section we have

found that the flaring cases mostly occur if a specific characteristic exceeds a certain threshold. We

have also obtained that the PIL descriptors are more effective in the separation of the positive and

negative cases. Thus, we first performed the classification based on the PIL characteristics only. We

automatically classified a case as negative if any of its PIL characteristics was below the corresponding

threshold. It was found that this procedure allows us to reduce the amount of data for the SVM

classification by 74.4% (leaving about 1/4 of all cases) for the ≥M1.0 class flares and by 91.2% for

the ≥X1.0 class flares. Only about 11.6% of positive cases for the ≥M1.0 and 14.0% for the ≥X1.0

class flares were misclassified as negative at this stage. To check the validity of this approach,

we repeated the training procedure with the threshold values decreased by a factor of

two that led to exclusion of 52.2% of cases (two times more cases need to be classified)

for the ≥M1.0 class and 72.8% (three times more cases need to be classified) for the
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≥X1.0 class cases. We have also checked how the inclusion of the global AR parameters

(AR area, unsigned magnetic flux, maximum strength of magnetic field, and unsigned

horizontal gradient) affect the forecasting result by repeating the training procedure

with all 11 parameters.

For the SVM training, we normalize the “train” dataset following Nishizuka et al. (2017): Z =

(X − μ)/σ, where X is a non-normalized data set, μ is the mean, and σ is the standard deviation.

We use the same μ and σ parameters to normalize the “test” data set. To find the optimal SVM

kernel (among the Linear, RBF, Polynomial, and Sigmoid available in the Python Scikit-

Learn package) and its parameters, we perform a cross-validation procedure on the “train” dataset:

divide it into two subsets (one simulating the train data set, and another simulating the test data

set) ten times, and then average the SVM results. As a measure of the SVM performance, we use

the True Skill Statistics (TSS) metrics defined as:

TSS =
TP

TP + FN
− FP

FP + TN
,

where TP is the true positive prediction (number of positive cases predicted as positive), TN is the

true negative prediction (number of negative cases predicted as negative), FP is the false positive

prediction (number of negative cases predicted as positive), FN is the false negative prediction

(number of positive cases predicted as negative). The TSS score is not sensitive to the class imbalance

ratio (the relative number of positive and negative cases), and is zero for a pure negative prediction

(when all cases are predicted as negative). The standard deviation of the TSS was estimated from

the scores obtained during the cross-validation procedure with the optimal parameters.

5. RESULTS

In Section 3 it was pointed out that the PIL characteristics separate flaring and non-

flaring cases more effectively than the global (integrated) characteristics obtained for

the whole ARs. The results in Tables 2 and 3 demonstrate that all PIL characteristics

give approximately the same scores in both tests for both, the ≥M1.0 and ≥X1.0 flare
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predictions. Among the global AR characteristics, the highest score is obtained for the

unsigned magnetic flux in the AR area, but still it does not exceed the scores for any

PIL parameter.

The results of prediction tests based on the PIL parameters only are summarized in

the second column of Table 4. For the ≥M1.0 class solar flares, we found that the best

score of TSS = 0.76±0.03 can be obtained using the “sigmoid” SVM kernel (described in

Appendix B) with parameters C = 0.1, γ = 0.01 and r = 0.001, and the negative/positive

class weights of 1/20. Description of these parameters can be found in Appendix B.

The score was derived from the following classification results: TP = 1932, TN = 42382,

FP = 6654, FN = 234 (including all cases in the test dataset). For the ≥X1.0 class

solar flares, we obtained TSS = 0.84± 0.07 for the same “sigmoid” SVM kernel but with

different parameters: C = 0.0001, γ = 10.0 and r = 0.0001, and the negative/positive

classes weights of 1/100. This TSS was derived from the following classification results:

TP = 194, TN = 44991, FP = 6009, FN = 8.

Interestingly, the flare forecasts performed using only the PIL characteristics have

almost the same TSS scores as the forecasts based on the full set of characteristics

(including both the PIL and global AR characteristics). The TSS scores for the full

set of characteristics are summarized in the third column of Table 4. For prediction of

≥M1.0 solar flares, the inclusion of global characteristics even decreased the TSS score

from TSS =0.76 to TSS =0.74. For prediction of ≥X1.0 flares, we have obtained the

same TSS =0.84 score.

The last column of Table 4 summarizes the results of the classification using the PIL

parameters with the pre-classification threshold decreased by a factor of two. The 50%

decrease of the threshold (which results in a smaller number of pre-classified samples)

leads to an insignificant increase of TSS for the ≥X1.0 flare prediction (from TSS =0.84

to TSS =0.85) and gives the same TSS for the ≥M1.0 flare prediction. Thus, we can

conclude that it is possible to pre-classify a significant number of cases (74.4% for the
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≥M1.0 class flares and 91.2% for the ≥X1.0 class flares) by applying thresholds to the

PIL parameters without a significant decrease of the prediction TSS score.

6. DISCUSSION AND CONCLUSION

In this paper, we have developed a machine-learning procedure solely based on the line-of-sight

(LOS) magnetic field observations that are available in near-real time from space-based and ground-

based observatories. The procedure is based on analysis of characteristics of the magnetic field Polar-

ity Inversion Line (PIL) which is automatically identified by performing the magnetogram segmen-

tation formulated as an optimization task. The PIL characteristics were derived from the SDO/HMI

magnetograms for each AR with 1 h cadence. We estimated the effectiveness of these characteristics

for forecasting ≥M1.0 and ≥X1.0 solar flares, and trained the Support Vector Machine (SVM) to

maximize the True Skill Statistics (TSS) metrics. Interestingly, the univariate effectiveness

scores are similar for all PIL characteristics, probably, because the PIL characteristics

(except, possibly, the Maximum gradient across PIL) correlate with each other (depend

on the same PIL length or the PIL area that depends on the PIL length).

The obtained True Skill Statistics scores TSS = 0.76 for prediction of ≥M1.0 class flares,

and TSS = 0.84 for prediction of ≥X1.0 class flares, can be compared with the scores

mentioned in other works. For example, Anastasiadis et al. (2017) reported TSS ≈ 0.5

for the prediction of ≥C1.0 class flares, Shin et al. (2016) received a maximum of TSS =

0.371 for ≥M1.0 class flares, Hada-Muranushi et al. (2016) — the TSS = 0.295 for ≥M1.0

class flares, Liu et al. (2017) — TSS = 0.50 for ≥M1.0 class flares. On the other hand,

our TSS score for ≥M1.0 is lower than ones in the works of Bobra & Couvidat (2015,

TSS =0.817), Nishizuka et al. (2017, TSS =0.88 for SVM classifier), Raboonik et al.

(2017, TSS =0.856). Also, Nishizuka et al. (2017) reported a higher TSS score for

≥X1.0 class flares (TSS = 0.88 for SVM classifier). Our results solely based on the line-

of-sight magnetic field observations are lower than those obtained with the use of vector

magnetograms, but still comparable.
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The score for ≥M1.0 class flares received in our work is higher than the known expert

predictions quoted by Nishizuka et al. (2017): TSS = 0.50 for the NICT Space Weather

Forecasting Center and TSS = 0.34 for the Royal Observatory of Belgium (Devos et al.

2014). It is also higher than the TSS = 0.53 of the National Oceanic and Atmospheric Ad-

ministration (NOAA) Space Weather Prediction Center (SWPC) deduced from Table 4

of Crown (2012). For the ≥X1.0 flares, again, our result is higher than the expert pre-

diction with TSS = 0.21 (the NICT Space Weather Forecasting Center, Nishizuka et al.

2017) and with TSS = 0.49 (SWPC NOAA, deduced from Table 4 of Crown 2012). We

can conclude that the accurately-tuned machine-learning technique, even if it is solely

based on the LOS magnetic field measurements, can compete with the expert-based

predictions.

It is necessary to discuss the influence of the data set construction on the prediction results. First,

the way of the division of the data set into the “train” and “test” subsets can change the prediction

scores. For example, the shuffled division (when the “train” and “test” subsets are not consequent

in time, but all cases from one AR are kept in one subset) reduces the scores from TSS = 0.76 to

TSS = 0.70 for ≥M1.0 class flares, and from TSS = 0.84 to TSS = 0.63 for ≥X1.0 class flares.

The strong difference in the TSS score for ≥X1.0 class flares is caused by a low number of X-class

flares in the data set. In this work, we relied on the NOAA AR detection and considered every case

with the detectable PIL, which already makes the data set to be subjective to the PIL detection

method. Nishizuka et al. (2017) used their own method to detect ARs, which definitely leads to

another data set with larger number of cases. Bobra & Couvidat (2015) reduced the actual data set

by cutting out some randomly-selected portion of negative cases. Thus, to guarantee the accurate

comparison of different prediction methods, one should unify the starting data set and its division into

the “train” and “test” subsets. Such attempts were done previously (Barnes et al. 2016),

and hopefully will be continue in the future.

The important role of PIL in the flare development process was pointed out in many

observations, simulations and forecasts of solar flares. Generally, the PILs are character-
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ized by highly-sheared magnetic fields, strong field gradients and complicated topology

of neighboring magnetic field structures. These properties result in a substantial amount

of free magnetic energy that can be released in flares. It is not surprising that many

flares are developed locally in the PIL vicinity. Our study statistically confirms the

importance of the PIL characteristics for flare forecasting. In particular, it demonstrated that

the PIL characteristics obtained just from the line-of-sight magnetic field component can be used to

obtain flare predictions compatible with expert-based forecasts and comparable to the predictions

that are based on full vector magnetic field observations. However, our results are accompanied by a

significant number of false positive predictions. Generally, a more accurate comparison of machine-

learning-based and expert-based predictions is required. Despite the promising results, we should

always keep in mind that the prediction is metrics-dependent. In this work, we maximize the True

Skill Statistics in a single parameter setup. Maximizing other metrics can result in other optimal

SVM parameters and prediction scores (Bobra & Couvidat 2015). Further work is needed to de-

velop algorithms for quantitative prediction of the flare class and physical properties (eruptive or

non-eruptive nature, geo-effectiveness etc).
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APPENDIX

A. MAGNETOGRAM SEGMENTATION AND PIL DETECTION ALGORITHM

Suppose B is a magnetic field strength map (magnetogram), Zi is a class of pixel i of the magne-

togram (i.e. “positive”, “negative” or “neutral”), N is the total number of pixels in the magnetogram,

ε(i) is a neighborhood (e.g. the closest 8 pixels) of pixel i. The magnetogram segmentation can be

formulated as the following optimization procedure to maximize function p(Z,B) for a given B by
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finding optimal classification Zmax (Laptev 2011):

p(Zmax, B) = max
Z

p(Z,B) ∝
N∏
i=1

φi(Zi, Bi)
∏
j∈ε(i)

φ(Zi, Zj)

Here φi(Zi, Bi) and φ(Zi, Zj) are the scoring functions for each pixel depending on the magnetic

field strength and assumed classes of pixels. The choice of the scoring function defines segmentation

characteristics and, in fact, should do the following: separate the segments of positive and negative

magnetic field polarity, and avoid very small segments with weak field probably coming from noise

in the data. We use the scoring functions suggested by Chernyshov et al. (2011):

φi(Zi, Bi) = e−C1

√
|B0−Bi|, for Zi “positive”

φi(Zi, Bi) = e−C1

√
|B0+Bi|, for Zi “negative”

φi(Zi, Bi) = e−C2|Bi|, for Zi “neutral”

φ(Zi, Zj) = eCpair [Zi �=Zj ],

where parameters C1 = 1.0, C2 = 1.0, Cpair = 20, B0 = 1000G are chosen to obtain a stable

segmentation of magnetic polarities in strong field regions. Here [Zi �= Zj] is equal 1 if Zi �= Zj, and

zero otherwise. Following Laptev (2011), the function p(Z,B) is interpreted as conditional probability

density function p(Z|B), and is approximated by the factorized probability density function q(Z) =∏n

i=1 qi(Zi). To measure how strongly the factorized distribution deviates from the actual, one can

use the Kullback-Leibler (KL) divergence (Bishop 2006). In order to find the best approximating

factorized distribution, q(Z), one can minimize the KL divergence:

min
q(Z)

KL(q||p) = −
∫

q(Z)log
p(Z|B)

q(Z)
dZ

Here we keep the original notation for KL-divergence KL(q||p) between distributions q and p

introduced in Bishop (2006). The optimal q(Z) is given by solution of the equation (following

Chernyshov et al. 2011):

qi(Zi) =
1

C
exp(log(φi(Zi))− Cpair

∑
t∈ε(i)

∑
j �=i

qj(Zj))
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which can be found iteratively:

qnewi (Zi) =
1

C
exp(log(φi(Zi))− Cpair

∑
t∈ε(i)

∑
j �=i

qoldj (Zj))

Using this equation, one can calculate the factorized distribution multiplier qi for each pixel i

and its assumed class Zi (“positive”, “negative”, or “neutral”). Because the factorized distribution

represents the product of multipliers for each pixel, one can simply maximize qi(Zi) for each pixel i

separately and obtain Zmax.

For identification of PIL in active regions, we smooth the original HMI magnetogram using the

Gaussian filter with width σ =1.5′′, and apply the segmentation algorithm. Then, we apply a

morphological dilation procedure separately for positive and negative segments (i.e. expand each

segment to include neighboring pixels), and find the PIL as an intersection of the dilated positive

and negative segments. Finally, we filter all small islands of the PIL with the number of pixels less

than 3% of the total number of pixels occupied by PIL. This approach is quite robust, and allows us

to automatically identify the PIL and calculate magnetic field properties.

B. DESCRIPTION OF THE SVM CLASSIFIER

The Support Vector Machine (SVM, Cortes & Vapnik 1995) classifier is the widely-used supervised-

learning classification algorithm. The SVM finds a plane in the descriptor space, which optimally

separates the positive and negative cases by solving the following functional minimization problem:

min
ω,ε

L =
1

2
||ω||2 + C

m∑
i=1

Wiεi,

yi(〈ω, xi〉+ b) ≥ 1− εi, εi ≥ 0,

where ω is a vector normal to the separating plane; i is case number in the “train” dataset, varying

from 0 to m; C is a soft margin parameter; Wi is the weight of the group which the case i belongs

to, εi is a measure of misclassification of case i; yi is a constant equal to 1 for positive cases, and

-1 for negative cases. After some transformations, this problem becomes a quadratic minimization

problem: the functional depends only on scalar products of vectors of characteristics 〈xi, xj〉. To



18 Sadykov and Kosovichev

achieve better separation between the positive and negative cases, very often the so-called Kernel

trick is used. The scalar product of characteristics in the functional is replaced by a function of the

characteristics:

〈xi, xj〉 → k(xi, xj).

In this work, we have tested several kernels available in the Python Scikit-Learn package:

k(xi, xj) = 〈xi, xj〉 (Linear),

k(xi, xj) = (γ 〈xi, xj〉)d (Polynomial),

k(xi, xj) = exp(−γ |xi − xj |2) (RBF ),

k(xi, xj) = tanh(γ 〈xi, xj〉+ r) (Sigmoid),

where γ, r and d are tuning parameters. The other SVM parameters are the soft margin parameter

and weights for both classes (multipliers of the soft-margin parameter). One needs to optimize all

these parameters during the cross-validation procedure.
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Figure 1. Illustration of the PIL automatic identification procedure: a) The magnetogram of AR 11158

obtained by the SDO/HMI at 2011-02-16 20:00:00 UT. b) The magnetogram segmentation and identification

of PIL: red, green, and blue areas correspond to negative, neutral and positive segments. The PIL identified

by the algorithm described in Appendix A is shown by white curves.
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Figure 2. 1D-histograms of a) unsigned magnetic flux in the PIL area; b) gradient-weighted PIL length;

c) unsigned magnetic flux in the AR area; d) unsigned horizontal gradient in the AR area. The negative

cases are shown in grey, the positive ≥M1.0 class cases are shown in red, and the positive ≥X1.0 class cases

are shown in green. The darker areas represent the intersections of the histograms. The red and green solid

lines represent the average values of the positive ≥M1.0 and ≥X1.0 cases, the corresponding dashed lines

show the thresholds corresponding to 5% of positive cases.
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Table 2. Importance of magnetic field characteristics for the forecast of ≥M1.0 class solar flares.

Characteristic Fraction of negative F-score

cases below threshold, %

PIL length (log) 0.63 1.41

PIL area 0.60 1.46

Unsigned magnetic flux in the PIL area (log) 0.63 1.41

Unsigned horizontal gradient in the PIL area (log) 0.64 1.48

Maximum gradient across the PIL (log) 0.56 1.15

Gradient-weighted PIL length (log) 0.62 1.45

R-value (log) 0.61 1.35

AR area (log) 0.44 0.66

Unsigned magnetic flux in the AR area (log) 0.49 0.86

Maximum strength of magnetic field in the AR (log) 0.29 0.30

Unsigned horizontal gradient in the AR area 0.44 0.69



LOS Characteristics and Flares 25

Table 3. Importance of magnetic field characteristics for the forecast of ≥X1.0 class solar flares.

Characteristic Fraction of negative F-score

cases below threshold, %

PIL length 0.84 2.68

PIL area 0.71 2.36

Unsigned magnetic flux in the PIL area 0.74 2.51

Unsigned horizontal gradient in the PIL area 0.83 2.81

Maximum gradient across the PIL 0.79 2.46

Gradient-weighted PIL length (log) 0.84 2.62

R-value (log) 0.84 2.47

Total AR area 0.51 1.32

Unsigned magnetic flux in the AR area (log) 0.60 1.91

Maximum strength of magnetic field in the AR (log) 0.41 0.68

Unsigned horizontal gradient in the AR area (log) 0.49 1.29
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Table 4. Comparison of TSS scores for different methods of prediction of ≥M1.0 and ≥X1.0 class solar

flares. The standard deviations are estimated using a cross-validation procedure.

PIL characteristics only PIL + global characteristics 50% decreased cutoff values

Prediction of ≥M1.0 flares 0.76±0.03 0.74±0.03 0.76±0.03

Prediction of ≥X1.0 flares 0.84±0.07 0.84±0.07 0.85±0.04


